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Abstract. A method is proposed for the estimation of the optical electron response function 
in a polar medium without recourse to perturbation theory. It has proved possible to write 
the temperature Green function of the electron coupled with a short-range potential and 
interacting (in a dipole approximation) with long-wave polarisation fluctuations proceeding 
from the functional integral representation. Using the steepest descent method in the 
high-temperature limit, comparatively simple expressions have been obtained. These are 
compared with experimental data for impurity ions in polar media and temperature 
dependences of the edge of the medium absorption band (Urbach rule). 

1. Introduction 

In the past few years experimental and theoretical studies of optical transitions and 
conductivity in polar semiconductors and insulators with impurity centres have received 
considerable attention. Though significant success has been achieved in this field, 
there are still problems to be solved (Levinson and Rashba 1973, Kagan 1975). For 
instance, no consistent explanation has yet been given of the characteristics of wide 
structureless absorption bands, which are interpreted as transitions with a large number 
of phonons involved. The following characteristic features have been observed which 
can be classed with the most important general optical properties of condensed media. 
First, the extinction coefficient decays exponentially with decreasing light frequency 
near the absorption band edge (the Urbach rule). Second, in the case of strong coupling, 
an  increase in temperature causes a shift to the red side of the absorption maximum. 
Third, in many systems the following characteristic features of the absorption band 
shape of impurity centres are displayed: asymmetry (with a drastic fall of the curve 
on the red side) and a large bandwidth, which cannot be related to the lifetime of 
excited states. 

Attempts have been made to explain these features qualitatively on models with 
strong coupling with phonons and a specially chosen ‘bare’ impurity centre spectrum. 
This spectrum is chosen as an initial one with a rather high degree of arbitrariness. 

Nevertheless it has been possible to make some estimates (Levinson and Rashba 
1973, Brodsky and Tsarevsky 1980) which show that some characteristic features, for 
instance, the large widths of absorption bands, cannot be accounted for in such a way. 
But even without taking account of the results of the estimations made, the generality 
of the above spectral properties has not been elucidated yet. Finally, the interpretation 
of the experimental fact that the coefficient in the Urbach rule index tends to a non-zero 
value at T + 0 (Kagan 1975) presents a fundamental difficulty for the existing theories. 
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The calculations which are beyond the framework of perturbation theory (with 
respect to the electron-phonon coupling) are of particular importance for solving the 
above problems. One of the possible ways of performing such calculations is associated 
with the use of a long-wave approximation. In such an approximation, it is possible 
to write analytical expressions for the temperature Green functions, proceeding from 
their functional integral representation. The dynamic effects of the phonon field 
fluctuations are taken into account in the Green functions. 

In the present paper the programme formulated has been realised for the most 
simple realistic model of a polar dielectric with the impurity centre described by a 
short-range potential. 

In 9 2 an  expression for the temperature analogue of the response function has 
been derived in the form of a functional integral in the phonon field. Such a derivation, 
corresponding to the case when the integrals in fermion variables are taken first in the 
expression for the functional integral representation of the Green function, is in many 
respects analogous to the method applied in quantum electrodynamics for finding 
infrared asymptotics and differs from that proposed by Feynman (1972), which sug- 
gested that an  integration in boson variables is to be performed first in the polaron 
problem and then the non-linear and non-local problem for an electron be solved by 
the variational method. However, there is a close relation between our approach and 
that of Redfield and co-workers (Dow and Redfield 1972, Redfield 1963). The main 
difference between the two approaches is that we solve the truly dynamical electron 
long-wave polarisation problem in contrast to Redfield, who had introduced an external 
random polarisation field with an  apriori given distribution. In 5 3 we treat a short-range 
potential model for an  electron. 

In conclusion a possible comparison of theory and  experiment has been discussed. 
Appendices present solutions of two independent problems: construction of the Green 
function for the 6-type potential in the presence of an  external field and the problem 
of taking functional integrals in boson variables. 

2. The functional integral representation of the response function 

The Lagrangian .Y( t )  describing the interaction of non-relativistic electrons, corre- 
sponding to the function +(x, t ) ,  with the phonon field b(q ,  t )  and the potential of 
some centre U ( x )  is taken in the following specific form: 

y( t ) = T.e( t + % ( t + T i n t (  t 
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The volume U with one potential centre is introduced into equation (1). The centres 
are assumed to be widely spaced and the effects of their correlation unimportant. At 
E = E=&,,/ ( E~ - E ~ )  the Lagrangian (1) is reduced through phase transformation to the 
Lagrangian of Frohlich interaction? taken in a dipole approximation. The required 
quantity is the electron susceptibility, which is proportional with a universal constant 
to the quantity a,,(f l):  

where j , , (x,  t )  are the operators of current, the square brackets indicate the commutator 
and the angular brackets denote the quantum and statistical averaging. The dynamical 
characteristics of the behaviour of electrons in a weak variable long-wave external 
field are given in terms of a8,. Electron operators of second quantisation have been 
introduced into ( 2 )  for a more uniform description of electrons and phonons. In 
addition, the procedure used allows direct generalisation for the case where production 
of electron-hole pairs may take place. The central point in constructing arJ is obtaining 
the temperature (Matsubara) (Lifshitz and Pitaevsky 1978) two-point Green function 
9( r , ,  x,; r 2 ,  x2) which admits the functional integral representation 

Z = { 6$84*6b{ exp[ lop d r (  (L?/r) + p { c $(x, r)$*(x,  7 )  d3x )]} P = l / T .  

Here 6$, S$* and 6b, in accordance with standard designations (Vasil'ev 1976), imply 
integration by non-commutative and commutative quantities $(x, r ) ,  $*(x, T )  and 
b(q ,  r ) ,  respectively, under the additional condition b*(q, 7)  = b( -q ,  - T ) .  

Equation (3) corresponds to the transition to the imaginary time t+-ir and a 
summand, proportional to the electron chemical potential p, is added to the action. 

Let us perform first a functional integration over 64, S4* in equation (3). We obtain 

The electron Green function 9 e ( r l ,  x,; r 2 ,  x21b), corresponding to the motion of an 
electron in the external classical field b(q ,  r ) ,  which depends periodically on r, appears 

t Without a dipole approximation the sum over 4 entering into Y,,, would have the form 

where the sum over q is cut off at inverse interatomic distances. In considering the temperature dependence 
of the response function we mean division of the sum over q into two intervals / q /  < yo and 141 > yo and 
assume that the interaction with short-wave phonons leads only to a change of U and to renormalisation 
of the coupling constant. The quantity 4o is supposed less than the inverse radius of the bound state in the 
potential U. This assumption makes it possible to expand into a series the exponent in Y,,, . It is essential 
that, owing to the introduction of yo, the number of parameters in the final result does not increase-all 
the temperature dependences observed are expressed in terms of the renormalised coupling constant (cf 
ltzykson and Zuber 1979). Note that the expression for Y,,,( I )  ( 1 )  is identical to that used by Redfield. 
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in equation (4). The function 
resulting from the determination of the temperature Green function: 

obeys the following equation and additional conditions 

= 7rT8(sin(T1 - T ~ ) ~ F T ) ~ ~ ( X ~  -x2)  

The factor ze(b) enters into equation (4) under the integral. It is determined by equation 
( 6 )  to an accuracy of non-essential normalisation: 

Choosing a normalisation so that ze(0) = 1, we have 

ze(b)  =exp(Sp In &‘(6)4e(0)). (7) 

The higher Green functions for 9 can be obtained from expressions of the type (4). 
For instance, introducing an additional source into the Lagrangian and differentiating 
the two-point Green function with respect to such a source, one may obtain an 
expression for the Matsubara analogue (Lifshiftz and Pitaevsky 1979) of the suscepti- 
bility: 

3. Short-range potential 

For further consideration it is required that the Green function should be constructed 
in a field b(q,  7). The simplest case when this is possible is that of the absence of a 
potential, U = 0. Then it follows from (5) that 

@ 2 ~ ~ ,  xl;  72, x2Ib) d3p exp[ip(xl - x ~ ) I % ~ P ;  T ~ ,  72Ib) 
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One should bear in mind the particular role of secular terms of the interaction with 
b(q, 7) in equation (9). The sum over s in (9) is obtained as follows: 
1 e x p [ - ( 2 s + l ) i ~ ~ / P ]  

Further, we consider a more interesting case (from the physical point of view), when 
U ( x )  is a short-range potential with one bound state, corresponding to the energy 
-x2/2m. The given potential can be approximated by the zero-radius potential. In 
what follows we assume that the condition 

(10) 
O < T < P  

- P < T < O .  7 (2s + l)i.?r/P - C 2 

1 / P  << -p  < x2/2m (11) 
is fulfilled. It is in agreement with the realistic physical situation when only a sufficiently 
deep bound state is populated. It follows from appendix 1 that if the inequality (1 1) 
is satisfied, ge( b )  and z,( b )  can be expressed in terms of 3:( b ) :  

321.(71, PI; 7 2 ,  Pzlb) = 3 3 P l  -p2;  71 I 72lb) 

+&lo' d.r'd7'' 3:(pl; T , ,  T ' ~ ~ ) T ( T ' ,  ~ " l b ) 3 : ( p ~ ;  T",  ~ ~ 1 b )  

2 r i x  
m 

T(T',  7"Ib) = -- e ( T " - T ' )  eXp 

+' ($ I," y(q ,  7 )  d7 1; y ( q ' ,  ?) d i  mv 4.4 44' 

Equation (12) is written out using (7 ) ,  (Al . l ) ,  (A1.8) and taking account of (10) and 
(11). Substitution of (12) into (8) yields 
a ,  = C I ~ ( ~ ~ ~ S T ) + ( Y ~ ( ~ T ~ S T ) +  a y ' ( 2 ~ i s ~ )  

a j , ( 2 r i s ~ )  = dT e x p ( 2 r i s T ~ )  I 6b exp( I," L&,(i) d i )  
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1’ d r  exp(2.irisT~) 1 Sb exp( lo’ z b ( i )  dF) 
1 

a’,’(2.irisT) = 
~ ( 2 ~ ) ~ ~  

I t  is interesting to examine the physical sense of the components CY,,. The quantity 
a; corresponds to transitions from the continuous spectrum and is proportional, as 
can be easily verified, to the population of states of this spectrum, i.e. it involves an 
exponentially small factor ep’T. The component CY f: corresponds to optical transitions 
from the discrete spectrum to the continuous one. The quantity a! can be evaluated 
in independent optical experiments by measuring photoconduction. Finally, a 
containing the T matrix twofold, describes the indirect interaction of light and phonons. 
In the first non-vanishing order of perturbation theory, this term corresponds to the 
virtual transition of a localised electron upon light absorption to a continuous spectrum 
with subsequent return of the electron to the initial level and emission of the appropriate 
number of phonons. When there is no interaction with phonons, CY;’ becomes zero. 
At R - x 2 / 2 m > 0  and a finite temperature, the contribution of the term  CY!'(^) to 
absorption turns out to be less than that of af : (R)  due to the small value of the 
corresponding accessible finite phase volume. However, at R - x2/2m << 0 and T +  0 
it is af:’(R) that appears greatest. It is important that this component produces a 
non-zero contribution to the light absorption at T + 0. 

We present a detailed calculation of the quantity ,y = a!/Sp 9,7,eT2 which is propor- 
tional to the extinction coefficient. Using (9)-(  12) and performing some transforma- 
tions this can be given, with an accuracy of the order of e+’T, in the form 

x e( TI - r2)[ e( 7 - T ~ )  + e( T~ - T)] exp 
2m 
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In the last expression of (14) the following transformations in the integrand were 
performed in succession: r + T - r1 , 6y(  r )  -+ 6y(  r + 7 , )  and the following substitution 
of variables was made: T~ + r2 + T,  r1 - r2 + rl , r + r2.  Further consideration of (14) is 
rather simple within the framework of perturbation theory for the case of weak coupling. 
Here we obtain 

- _  1 ( 2 ~ ) ~ ’ ~ ( 2 m ) ~ ’ ~  exp(-x2/2m *27risT)r - d r  
3 (27risT)’ Io 

[9(27risT - x ’ / 2 m ) 3 F l ( ~ )  
2m 3 . s ~  sinh w / 2 T  
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where qo is the cutoff radius of the sums over q in the momentum space, and 

F , ( T )  = K0(7’,  T”)  dr’d7’’ 

F2(7)  = J’:” KO(+, 7’) dr’  

The case of strong coupling is most interesting. Using the results of appendix 2, 
one may analytically evaluate the integral over 6y(q, 7) in (14): 

C p l (  7 ’ ) (92 (  T ” ) e (  7”- T’ )  + Cpz( T’)Cp,( T ” ) e (  7’- 7”) 
Kl (  7’, 7”) = 

(PXO) 

cpl(  i )  = cosh &? 

vq stands for the volume in the momentum space. This volume enters into the 
renormalised coupling constant G 2 -  w’ = e2uq/Em, the only parameter defining the 
interaction with a phonon field. The expressions for the ratio of the determinants 
Do(@)  and D(w, 6, T ) ,  are given in appendix 2. 

Let us now perform the analytical continuation 2 m T i + O .  Under an additional 
requirement for limitation on the growth along the real axis this continuation is 
unambiguous, according to the Carlson theorem. A scheme of such a continuation 
can be illustrated, for instance, for the first term on the right-hand side of equation (16): 

exp[-(x2/2m).] ( 1  Do(w) 1)3 ’2  sin’ TSTT i,” 75’2 D ( 4  U ,  7) (2 TS T)’ 
d r  
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exp(-ix2/2m)T( I ~ ~ ( w )  *$ low dr[  T 5 / 2  D(G, w,  i T )  

x [ 1 + - exp(in.r)] + (0 + -Q). 1 
Applying this scheme to equation (15) we obtain the optical response function 

within the framework of perturbation theory: 

Each summand in (17) can be interpreted in terms of optical excitation with absorption 
and emission of phonons. 

After continuing equation (16) to a real t the problem of determining the absorption 
coefficient for the most interesting case of strong coupling is reduced to calculating 
the quadratures 

Im x ( 0 )  =- 1 - T312 ( 2 m p 2  - e’ Re i-”* exp(inf t  +$4( t ) )  
3 J 2  n2 

where 

4 ( t ) =  - ( G 2 - w 2 )  K(ir’,ir’’) dr’dr’’  

( j 2 -  2 I/’ 

4, ( t ) = 3i ~ 4 jo K(i7‘, ir”) d7’ dT“ 
t 

(25;” ICl(+, ? ) K i ( r ” ,  ?‘) di‘di“)  
[ l  - ( & 2 - ~ 2 / ~ ) 2 5 i / ’  ICl(?’, i“) di’di“]-I‘ 

X 
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The integral in (18) will be taken by the method of steepest descent, after passing to 
the integration variable U = f ” ’ .  This method can be considered applicable if at least 
one of the conditions corresponding to strong coupling and/or high temperatures or 
to the frequency range away from the threshold is fulfilled: 

The saddle point lies in the origin and it turns out to be necessary to retain terms of 
the order of u6 in the expansion since a term proportional to u4 enters with a small 
coefficient, and under conditions (19) it may be omitted, whereas a term proportional 
to u 2  at R f > 0  does not lead to the temperature dependence of the spectrum. As a 
result we obtain 

+RfR;u4)  exp(iR,u’ + iRiu6)  du)  

In writing equation (20), we considered for simplicity the phonon frequency w far less 
than G and T, and expanded the trigonometric functions in a series in w. The integral 
(20) is performed by the formula 

Re i-1’2 1; exp[i(xu2+y3u6] du 

which is checked by differentiating with respect to x. It is essential that the products 
of the cylindrical functions K1/3, H:>,” are smoothly varying functions of their argu- 
ments, and this allows consideration of different limiting relations of the parameters. 
Away from the threshold at IR:l >>Ri  we obtain 

At Rf-  0 we have 
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4. Conclusion 

The calculations performed admit direct generalisation to describing optical transitions 
on centres with more than one discrete level and interactions with different-type 
phonons. Without using these generalisations, the results obtained at  the end of the 
previous section can be applied to describing the optical transitions in systems with 
negative impurity ions possessing only one discrete level in polar media. The curves 
for optical absorption of solvated electrons and negative ions in polar media are 
asymmetrical, the asymmetry growing with temperature (see Brodsky and Tsarevsky 
1980). On moving to the red side of the absorption maximum, the drop changes from 
the threshold low’ to a linear low and  then turns to an exponential damping 
when ilf< 0, in,-! > ab. All these characteristic properties at reasonable values of 
parameters are described quantitatively by (22). 

2 . 0  

0.1 0 . 2  0.3 0 .4  
SliISl3, 

Figure 1.  Peaks of absorption of solvated electrons in methanol (0 )  a n d  water (A) against 
hf l , .  

2 

- 1  

Figure 2. The  optical density D against photon energy h R .  Points show the data of Mahr  
for the absorption of pure KCI at  300 K. The curve corresponds to the present theory 
using equations (20) and  (21) .  



3906 A M Brodsky and A V Tsarevsky 

The physical sense of these equations (23) describing an absorption may be 
interpreted as follows. The behaviour of absorption at the frequencies Rf-Rh is 
defined by the fact that, near the threshold, the accessible final phase volume is less 
than the phase volume accessible for the non-interacting particle. Transition is possible 
only in the direction where the projection of the polarisation field is zero and which, 
accordingly, conforms to the zero mean classical kinetic energy of electron pulsing. 
The threshold law is no longer three dimensional and  as a result there appears a region 
at Rf-  a,, linear in Rf ,  instead of the usual cross section proportionality of production 
of (Brodsky and Tsarevsky 1981). In contrast, further growth of absorption with 
increasing Of,  involving an  increase in the accessible final phase volume, turns out to 
be faster than that for the particle not bound with phonons. Obviously such a behaviour 
cannot be obtained when only the Stark-type initial level shift in a phonon field is 
considered, and  the electron matrix elements of the optical transition are taken constant. 
It should also be noted that an account of the first non-vanishing order in the Stark-type 
energy shift always leads to ‘repulsion’ of the lower levels and levels closer to it. In 
other words, it can in no way explain the shift of the absorption maximum to the red 
side with increasing temperature, observed in the conditions of strong coupling, though 
it can be interpreted in the framework of the theory developed under conditions of 
sufficiently strong coupling. At the same time, with a rather weak coupling where an 
inequality inverse to (19) is fulfilled, equations (17) and (18) actually lead to the shift 
of the absorption maximum to the blue side with increasing temperature. The exponen- 
tial damping at Rf  < 0 is in agreement with the tunnelling at favourable values of the 
phonon field coordinates. The corresponding expression is close to that for the 
empirical Urbach law for optical transitions in semiconductors, though it somewhat 
differs from it analytically. In particular, as in Dow and Redfield (1972) the energy 
hRf  enters into the exponent to the power and not linearly, as is stated in the Urbach 
rule. The results obtained in § 3 can be compared qualitatively with optical transitions 
in semiconductors with the condition that the initial level -x2/2m conforms to an  
extremely narrow valence band and the continuous spectrum conforms to a conduction 
band. It- is most 

5 

L 

0 3  

- 2  
ISI 0 

Sssential in this comparison to -describe the transition from the 

E ( e V 1  

~ 

500 700 900 
T I K I  

Figure 3. ( a )  The optical density D against photon energy h R  for the absorption of I -  in 
KCI. Points show the data of Mahr. Curves correspond to the present theory using 
equations (20) and (21) for, from left to right, T = 900,800,700,600,500 K. ( b )  Temperature 
dependence of the parameter R h  deduced from ( a ) .  
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exponential absorption law to the power law in the framework of a unique formula, 
observed experimentally with increasing frequency. 

The curve in figure 1 shows a comparison of theoretical and experimental results 
for the temperature shift for the optical absorption of a solvated electron in methanol 
and water. As an example of threshold range analysis of optical transitions in semicon- 
ductors we choose the KCI system, investigated by Mahr (1963). As can be seen from 
figure 2, the theory can describe the complex behaviour of the experimental curve in 
the whole threshold range. Figure 3 shows the comparison of the theory with Mahr's 
results concerning the optical absorption of I- in KC1 near the red edge ofthe absorption 
band below the threshold of exciton creation. As can be seen from figure 3 ( b ) ,  the 
relation 0:- T is in agreement with experimental results. Note that the smooth 
maximum just below the threshold at ~ 6 . 5  eVin figure 2 is associated with phase-volume 
relations and has the same nature as the cusps in cross sections near thresholds in 
scattering theory (see Newton 1966). 

It is obvious that there is an analogy between the above expressions and formulae 
of the theory of phase transitions of the second kind, the phonon field playing the role 
of the coordinate-dependent order parameter in the effective Ginzburg-Landau Hamil- 
tonian and the threshold value corresponding to the phase transition point. 

Appendix 1 

In  the case where U ( x )  is approximated by a potential proportional to S3(x) the Green 
function ,?Ye( T , ,  x,; T ~ ,  x21 y b )  with y as the parameter defining the force of interaction, 
is presented in the form 

,?Y/e(Tl, xi; 7 2 ,  X2IYb) = ,?Y%I, XI; 7 2 ,  X21Yb) 

+ I," d7' d7" ,?Y:( T , ,  x,; T ' ,  01 y b )  

X T (  T ' ,  ~ " 1  y b )  ,?Y:( T", 0; 7 2 ,  x21 r b ) .  ( A l . l )  

Here the quantity T(.r', 7"Iyb) is to be determined. (Al .1)  is written out proceeding 
from the structure of iterative series for a T matrix, each of its summands containing 
the delta function a3(x) at the edges. To find T (  T ' ,  .r"Iyb) we use the operator equality: 

Substituting ( A l . l )  into (A1.2) we obtain 

(Al.2) 

(A1.3) 

In (A1.3) we have introduced the quantity T - ' ( T ~ ,  ~ ~ 1 y b )  determined from the equation 

(A1.4) 

Applying the value of T-' at y = 0 obtained from the well known expression of the 
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theory of potential scattering, from (A1.3) and (1 1) we obtain 

1 f P  

(2s + 1) 
x exp( -7 i r (  - T ~ )  

(A1.5) 

In (A1.5) we have performed a shift in the integration variable p .  It is essential that 
the derivative of the summand with the reciprocal length of scattering x z 0 in the first 
expression of (A1.5) for T-l with respect to y is zero. The y ( q ,  T,)-dependent addition, 
cancelled by the shift of variable p ,  is introduced into the denominator of this summand 
(which makes the integral taken over p converging at p + O )  to simplify further 
calculation. In what follows we use an approximation satisfying (1 l ) ,  assuming that 
the values of exp(-x2/2mT)  and  ep’T tend to zero. In such an  approximation for the 



Efect of polarisation fluctuations on the optical response function 3909 

integral entering into (A1.5), for instance, at - 1 / 2 T s  T (  - r 2 s  1/2T with the help of 
(10) we have 

(Al.6) 

provided r1 - r2 # 0 
provided ( T~ - T ~ )  + 0 

when exp(-x2P/2m) + 0. 

At T~ = r2 the divergence is delta-function-like and one should bear in mind that below 
only the integrals of the derivative a 9 / a T 1  multiplied by smooth functions of r1 enter 
into the calculations. In addition, due to properties of the Fourier series of jump 
functions, the value of @ ( T I  - T ~ )  at r1  = T~ should be assumed equal to f. To support 
the above statement on the character of singularity and to elucidate the coefficient of 
the corresponding 6 function we consider the integral displaying the structure of 
9( T ~ ,  r 2 )  in the vicinity of r1 - T~ = 0: 

m 
T )  [( p - E ) ’ +  x’1-I = -=. (A1.7) 

From (AlS)-(A1.7), after periodic continuation with respect to r1 - r 2 ,  it  follows that 
in the approximation used the T matrix T ( r l ,  .r21b) is written in the form of (12). 

To elucidate these approximations we present a precise T matrix in the absence 
of interaction with the field b(q, T )  in the form 

(A1 -8) 
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In  this case the adopted approximation corresponds to omitting the second summand 
in (A1.8) which describes the effect of a delta-function-like potential on the s state of 
the continuous spectrum. When equation ( 1  1 )  is satisfied, such states are not populated, 
and the transition from the initial s state of a discrete spectrum in a dipole approxima- 
tion is forbidden. Hence the expressions obtained at y = 0 turn into exact results for 
the zero-radius potential. 

Appendix 2 

To perform functional integration over 6y in (14) we use the formula 

According to (A2.1) one should define the Green function K ( q ,  7; q‘ ,  if) satisfying the 
periodicity conditions and the following equation (the function Ko(q ,  7; q‘ ,  i) should 
satisfy the same equation with e = 0): 

K ( q ” ,  7; q’ ,  i’) d i “  

We shall search for the function K ( q ,  i; q’ ,  i‘) as follows: 

(A2.2) 

(A2.3) 

2~ coshw(1/2T-(?- i t l )  KO( ?, i’) = - 
E 0  sinh( 0 / 2  T )  ’ 

We use a formula which is verified on transition from a discrete space to a continuous 
one: 

(A2.4) 
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where uq is the volume of the momentum space cell. With the help of (A2.4)  after 
substituting (A2.3)  into (A2.2)  we obtain for k( i ,  i’) the equations and boundary 
conditions 

(A2.5)  

4rre’ ;’= w2+- 
3Em 

Let us introduce an  auxiliary function io( F, i’), obeying (A2.5) without an integral 
term. The function k (  i, if) is expressed through KO( i, i’) as follows: 

io( ?, ?) has the structure 

Eo( i, 7) = f[ K,(  i, ?) + K 2 (  F, ?)I. 
For K ,  and K 2  we obtain the equations and boundary conditions 

+ 6 ,  I ( G 2  - w *) O(ir2 - i2) K ,  ( i, F ‘ )  
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= - [ S( 7‘’ - 7’) - (- 1)’S( i’ + i”)] i = l , 2  

E 

and K 2 = 0  at i = 0, p / 2 .  aK1 
a i  A’ 
From (A2.6) and (A2.7) it follows that k ( f ,  i’) has the form 

k ( i , i ’ ) = i ( K O ( i ,  r ’ ) + K l ( i , r ’ ) )  

-- 

(A2.6) 

(A2.7) 

2 ( G 2 - w 2 )  ( 2 ( 3 2 - w 2 )  j;i2 + 1-  K,(  r‘, 7”) d r ’  d r ”  
7 7 

xj;’ Kl(?, r ‘ ) K l ( i ’ ,  r ” ) d r ’ d r ” .  (A2.8) 

In constructing relations of determinants arising in integration over Sy in (14) ,  we 
apply the sequence of equalities 

(A2.9) 
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The intermediate equalities are verified by expanding the logarithm in the index, using 
(A2.4). Note that functional integrals taken over ‘even’ y ( q ,  r )  in the numerator and  
denominator of (14) coincide, so one should actually have only the function K , (  G, G’) 
and the corresponding ‘free’ function KO(  G, ?) determined by the first of the equations 
(A2.7) without the term of interaction and by the same boundary conditions as have 
been used for determining K , .  Differentiating (A2.9) with respect to the parameter r, 
we obtain 

but 

and, consequently, 

& [ l:’dG( K,(G,  +) Sp;(ln K K ; ’ ) = - ( 3 * - w 2 )  
A 1  
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(A2.10) 

(A2.11) 

(A2.12) 

The expression for K l ( f ,  7’) is given in the text (equation (16)). 
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